Electrokinetic Properties of the Pristine and Oxidized MWCNT Depending on the Electrolyte Type and Concentration
نویسندگان
چکیده
Electrostatic stabilization is reduced in its efficiency in an electrolyte-containing environment. The effect of electrolyte concentration is mostly described as negative factor for dispersion stabilization. Usually, zeta potential and physical stability decrease at increasing electrolyte concentration. The purpose of the present study was to measure the surface properties of nanotubes in aqueous solution of monovalent electrolytes at different concentration. Characteristics such as size distribution, surface chemistry, surface charge, and dispersability in aqueous phase have been identified. Hydrodynamic size and zeta potential in aqueous multiwalled carbon nanotube (MWCNT) suspensions were determined at different pH with the desired concentrations of electrolyte of the cationic group (NaCl, KCl, CsCl) and the anionic group (NaClO4). The correlations between the response of the surface functionality of pristine and oxidized multiwalled carbon nanotubes and electrical double layer (EDL) forming at different ionic environments in the vicinity of a nanotube surface were determined. The nanotube dispersion stabilization was found to be more affected by ion size and pH medium then electrolyte concentration. The data obtained confirms the predominant role of surface reactions. The most stable dispersion of nanotubes was achieved in KCl electrolyte solution at less negative charge of the surface.
منابع مشابه
Preparation and characterization of MWCNT-COOH/PVC ultrafiltration membranes to use in water treatment
Polyvinyl chloride (PVC) membranes containing pristine and modified multiwall carbon nanotube (MWCNT) were prepared and characterized. MWCNT was modified in order to achieve well-dispersion within the membranes. The results of FTIR analysis revealed that MWCNT was successfully carboxylated. The FESEM images indicated that the number of pores on the surface of membranes increased at the presence...
متن کاملEffect of Carbon Nanotube and Surfactant on Processing, Mechanical, Electrical and EMI-Shielding of Epoxy Composites
Dispersing nanoparticles in a polymer matrix is intrinsically challenging due to unfavorable entropic interactions between the matrix and the nanoparticle. In this research dispersion of nanoparticles in polymer matrix was studied and the effect of dispersion on properties was investigated. The properties of polymer composite depend on the type, size, shape, concentration of nanoparticles, and ...
متن کاملCatalytic Oxidation of Carbon Monoxide by Cobalt Oxide Catalysts Supported on Oxidized-MWCNT
Cobalt oxide catalysts supported on oxidized multi-walled carbon nanotubes (MWCNT) for the low-temperature catalytic oxidation of carbon monoxide were prepared by an impregnation-ultrasound method. These catalysts were characterized by N2 adsorption/desorption, TEM, XRD, Raman, and H2-TPR methods. The XRD and Raman results indicated that the phase of the synthesized cobalt...
متن کاملInvestigation of Hydroxylated Carbon Felt Electrode in Vanadium Redox Flow Battery by Using Optimized Supporting Electrolyte
Traditional vanadium batteries use pure sulfuric acid as electrolyte, but H2SO4 does not absorb enough vanadium ions to make the electrolyte an efficient energy source. This study investigates the effect of hydroxylation process on electrochemical and operational properties of carbon felt electrode in VOSO4 solution with an optimized supporting electrolyte (a mixture of six parts HCl and 2.5 pa...
متن کاملPreparation, characterization and stability of Li-ion conducting Li1.5Al0.5Ge1.5(PO4)3 glass-ceramic with NASICON-type structure
A conducting lithium aluminum germanium phosphate (LAGP) glass-ceramic with a formula of Li1.5Al0.5Ge1.5(PO4)3 was synthesized by melt-quenching method and subsequent crystallization at 850 °C for 8 h. The prepared glass-ceramic was characterized using differential scanning calorimetry (DSC), X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), and AC impedance techniqu...
متن کامل